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ABSTRACT

Given n planar existing facility locations, a planar new facility

location X is called efficient if there is no other location Y at least

as close to every existing facility as X, and strictly closer than X to

at least one existing facility. We present an algorithm which is either

of order n(log n) or order n (depending upon how the problem is defined)

that constructs all efficient locations, and establish that no alternative
é algorithm can be of a lower order. With the exception of two computational
| complexity results, our work is entirely self-contained, and relies almost

entirely upon simple geometrical analyses.
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INTRODUCTION

Suppose a number of existing facilities are given, having planar
P locations Py, ..., P . A new facility is to be located in the plane

i at some point X to be determined. With Pi = (a,, bi), X = (x, y) we

denote the rectilinear distance between X and Pi by r(X, Pi) where,

by definition.
r(X, P,) = [x - ail + |y - bil.
Given any point Y in the plane for which
r(Y, P,) <r(X, P ), 1 <1 <n,

we say that Y dominates X if X and Y satisfy the n inequalities, with

at least one inequality holding strictly. In other words, Y dominates

X if Y is at least as close to every existing facility location as X is,
and closer than X to at least one existing facility location. If no

point in the plane dominates a point X*, we say that X* is efficient.

We denote the set of all efficient points by S*, and call S* the efficient
set. Note that each existing facility location Pj is in S*, for to have

a point Y dominate P, would imply r(Y, P

5 j) g_r(Pj. Pj) = 0, in turn

implying Y = Pj'
Recently Wendell, Hurter, and Lowe [ 8 ] have introduced and studied
the problem of finding $*, and discuss some application contexts, with
emphasis upon multiple objective problems. We remark that s* may also be
of value in carryiag out sensitivity analyses for single objective location
problems, since such problems typically have the property that their
optimal solutions are efficient. Also it appears that s* may be of value

in the study of some internal warehouse location problems, in which case




'. each existing facility would be a warehouse dock, and the new facility
location would be the location of an item in the warehouse.

Wendell, Hurter, and Lowe develop a number of properties of S*, and
present two different algorithms for constructing s*. Their work relies
upon a good deal of relatively deep convexity analysis [2 ], [7 ]. We
establish in this paper that S* can be characterized in an entirely self-
contained, simple, and intuitively appealing manner, using only geometry.
We consider our work both complements and supplements the work of Wendell,
Hurter, and Lowe. In particular, we point out that the arrow algorithm
we present for constructing s* 1is closely related to, and motivated by,
the second of the two algorithms in [8 ].

The primary value of the arrow algorithm in our approach is as a tool

to facilitate proofs. A second algorithm we present, the row algo-

rithm, is more efficient. In fact, the row algorithm is the most ef-
ficient possible, in the sense that there exists no algorithm to comstruct
S* which has a smaller order of computational effort, n(log n), than the
row algorithm. For example, efficient implementations of the first and
second algorithms in [8] result respectively in computational orders

of n? and n3; either order is greater than that of the row algotithm. For
a discussion of a number of other algorithms of order n(log n) for solving
geometric problems, see Shamos [5 ], [6 ].

Subsequently, following [8 ], we define the Line Construction Procedure:

roughly speaking the procedure consists of plotting the points Pl’ sesy Pn

and constructing both a vertical and horizontal line through each point.
If the algebraic equivalent of the line construction procedure is considered
to be part of the problem formulation, rather than part of the row algérithm,

then the row algorithm is of order n, and no algorithm to construct S* can




be of an order smaller than n. Even when the line construction procedure is
considered to be part of the row algorithm, the algotithm performs as if it
is of order n until n becomes "large."

In the next section, after presenting and illustrating a number of
definitions, we present and illustrate the "arrow" algorithm which constructs
the efficient set. We then give a characterization of the efficient set.
The following section contains the row algorithm. The last section of the paper
consists of the analysis needed to justify the algorithms and the characterization

of S*.
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CHARACTERIZING THE EFFICIENT SET

Figure 1 illustrates a basic notion, a diamond with center P1

and radius e,, denoted by D(Pi’ ei). D(Pi’ ei) consists of all points

1
in the plane whose rectilinear distance from Pi is no greater than e,-
The boundary of D(Pi’ ei) consists of all points in the plane whose
distance is equal to ei, and so of course has the property that any two
points on the boundary are the same rectilinear distance (ei) from Pi'
In other words, the boundary is a contour line of the rectilinear
distance from Pi of value e-

We call line segments parallel to the line y = x SW - NE line
segments, and call line segments parallel to the line y = -x SE - NW

line segments. Note that two edges of any D(Pi’ ei) are SE - NW line

segments, while the other two edges are SW - NE line segments.

Line Construction Procedure, Through each point Pi construct a

horizontal line and a vertical line. The horizontal (vertical),

line should extend at least as far right and as far left (as far up
and as far down) as every Pi‘ Subsequently whenever we refer to a
line we mean a constructed line unless we specify otherwise. Figure 2a

illustrates the construction procedure.

Noncollinearity Assumption. We assume that not all the Pi lie on a
single vertical line, or on a single horizontal line, as in this case
S§* is just the line segment joining the two P1 which are farthest apart,
so that constructing S* is a trivial problem.

Definitions. Figure 3 illustrates a number of the definitions to

follow. For any vertical line we define the union of the line with




the set of points t- the right (left) of the line to be the set of points
which are east (west) of the line. (Note that this definition permits
a point on a vertical line to be both east and west of the line.) Similarly
we define the set of points north, and the set of points south, of each
horizontal line.

Given any two distinct adjacent horizontal lines H and H', with H
north of H', and any two distinct adjacent vertical lines V and V', with
V east of V', we call the set of points lying west of V, east of V', south
of H, and north of H', a box, and denote the box by B. We call the col-
lection of all boxes between any two adjacent vertical (horizontal) lines
a column (row). Each of the four intersections of the box with a line
we call an edge of B. We say two boxes are adjacent if their intersection
is an edge of each box. The collection of all poinis lying south of H'
and east of V we call the SE direction of B (abbreviated SE(B)) similarly
we define SW, NW, and NE directions of B, and use the abbreviations
SW(B), NW(B), and NE(B) respectively. We call the abbreviations SE, SW,

NW, and NE the box direction labels. We say that a direction of B is

unoccupied (occupied) if there is no (at least one) Pi in the direction.

We denote the union of all the boxes by B.

Arrow Drawing Procedure. For each box B we draw an arrow pointing from

SE(B) to NW(B) whenever SE(B) is unoccupied, and call the arrow a SE

arrow. We say the arrow points away from the south and east edges of B,

and points towards the west and north edges of B. Likewise we construct

and define SW, NW, and NE arrows whenever SW(B), NW(B), and NE(B)
respectively is unoccupied. We call the abbreviations SE, SW, NW, NE

the arrow direction labels. Figure 2b illustrates the arrow drawing

procedure.




The following observation provides the motivation for the arrow
drawing procedure.

Observation 1. Suppose we are given any box B with arrow o in B,

For any point X in B, move the point X in B in the direction towards
which o points along a line segment parallel to P , until the point
intersects a box edge at a point X'. X and X' are such that
r(X', P) <r(X, P,), 1 <4 <n. Further, if X' # X and the direction
towards which a points is occupied, then X' dominates X.

To establish this observation (see Figure 4 ), suppose without
loss of generality, that o is a SE arrow and X' # X. We have

r(Xx', Pi) = r(X, Pi) for P, in NE(B) u SW(B), while r (X', Pi) < r(X, Pi)

i

if Pi is in NW(B). Since SE(B) is unoccupied, X' thus dominates X

whenever NW(B) is occupied.

Observation 2. Each box has exactly 0, 1, or 2 arrows. Whenever a

box has 2 arrows the arrows are parallel and point in opposite directions.
To establish this observation we note that if a box has perpendicu-

lar arrows then there are no P, in some half-plane defined by a line

i
passing through some edge of the box, which is impossible. Hence a
box has at most 2 arrows, and if it has 2 arrows then the arrows are

parallel.

Definitions. We call a box with 0, 1, or 2 arrows a null-box, l-box,

and 2-box respectively. For any l-box B we call the two edges towards
which the arrow in B points the leading edges of B (see Figure 4).
By virtue of the definitions and Observation 2, we have

Observation 3. Each box in B is either a null-box, l-box, or 2-box.

A null-5ox has no unoccupied directions. A l-box has exactly one
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unoccupied direction, which has the same direction label as the box
arrow. A 2-box has exactly two unoccupied directions, which differ
by 180 degrees: the labels of the unoccupied directions are identical
to the labels of the two arrows in the box.

Figure 5 illustrates Observation 3.

Observations 1 and 3 give

Observation 4. If B is a l-box, and X is any point in B such that X

is not on a leading edge of B, then there is a point X' on a leading
edge of B such that X' dominates X.
It is also convenient to state

Observation 5. Any point X which is not in B is dominated by a point

X' which lies on the boundary of 8, and is the closest point in B to X.
We now state the

Arrow Algorithm. To determine the set S* of all efficient locationms,

carry out the line construction and arrow drawing procedures, and classify
each box as a null-box, l-box, or 2-box.

1f there are no l-boxes, take S* = B; otherwise choose a 1-box B
not yet chosen and delete from B all points in B except those on the
leading edges of B: repeat this deletion procedure for every l-box.
Denote by B the subset of B remaining after the completion of the de-
letion procedure. Take S* = B.

We remark that if E is a common edge of two l-boxes, B and B',

if E 18 a leading edge of B, and not a leading edge of B', then E (except

for one endpoint) will be deleted from B once B' is chosen. Figures
2a, 2b, and 2c illustrates the algorithm: a null-box is identified by a

dot in the box.




' & Due to Observations 4 and 5, we have

Observation 6. Any point not in B is dominated by a point in 8.

With two additional definitions we can characterize S*.
Definition. An edge E of any box B is called a connecting edge if

(a) every arrow in B points towards E and E is contained in the

boundary of B, or

(b) there is also a box, séy B', such that E is the common

edge of B and B', and every arrow in each box points towards
E.
Connecting edges are illustrated in Figure 6.
Definition. Denote by B* the union of the following:

(a) all null-boxes
: (b) all 2-boxes
A (c) all connecting edges.

Subsequently we establish that S*, the set of efficient points,
B, the set of points left by the algorithm, and B* are all identical.
Thus the arrow algorithm deletes all points in B which are not points
in B*. Figure 2c illustrates B*.

As a final comment, we note that the arrow algorithm as stated,
and each of the algorithms in {8 ], is "memoryless" to some extent,
in the sense that each algorithm can make more use than it does of
information obtained during the process of determining the efficient
set. In the following section we present the row algorithm, which ex-

ploits such information efficiently.
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' H CONSTRUCTING THE EFFICIENT SET:
THE ROW ALGORITHM

PR

Some notation is convenient. Denote the horizontal lines by Hl’ HZ’ e uy
H ol from north to south, and the rows by Rl,’ sviop Rp from north to south.
For 1 < i < p+l, denote by "’1(31) the x coordinate of the westmost (eastmost)

existing facility location on H For Ri’ 1 <1 <p, define uwi(swi) to be

4
the x coordinate of the westmoet existing facility location which is north
(south) of R, . Define NEi(SE:l) to be the x coordinate of the eastmost

existing facility location which is north (south) of Ri' (See Figure 11.)
As an immediate consequence of the definitions we have

Observation 7 Let B be a box in R,, 1 < i < p.

i’
(a) NW@®B) [SW®B)] is unoccupied if and only if B is west of the vertical
‘ : line x = W, (x = SW,).

(b) NE@®) [SE@B)] is unoccupied if and only if B is east of the vertical

line x = NEi(x = SE,).

i

By virtue of the above observation we can readily classify the boxes

in each row Ri‘ The following observation facilitates the computations of

Wi, swi, NEi’ and SEi.

Observation 8 The following recursive relationships are true:

Nwl = Hl NEl = El

N, = nin(wi, wi_l) Nli:1 = max(Ei, Ngi-l) i 2Lty
swi = "1“(“14—1' 8“1-0-1) Sl!1 = m.z(Ei*l, SE“_I) s 12t € p=l
SWP-WP'_I SEP-EP"'L




s 3

The above recursions are easily established. For example, certainly

Nwl = "1' Also, the only existing facility locations north of R1 lie on

Hl’ “2’ sniip B and so

1’
N“i = min(wl, Wz, et Wi).

Likewise

""1-1 = nin(wl. Wz, e .

and so certainly-

Wiy

Nwi = min(wi, “"1-1)'
An equivalent geometric means of computing the recursions, which
both provides insight and is easy to carry out manually, may be

described as follows.

4-Color Procedure. Associate the colors Blue, Green, Red, and Yellow

with the directions NW, NE, SW, and SE respectively.

Repeat the follwoing North to South Step for lines Hi,..., H consecutively.

p+l
Beginning at the west (east) boundary of B, draw a blue (green) line over Hy

from west to east (east to west) terminating the line at x = Nwi (x = NEi)’ which
is the point at which one of the following two events first occurs:

(a) The line initially intersects an existing facility location on Hi’
(b) The line attains the same length as the blue (green) line on H _,.

Repeat the following South to North Step for lines H Hj consecutively,

p+1,o.-,

Beginning at the west (east) boundary of B, draw a red (yellow) line over Hi

from west to east (east to west), terminating the line at x = Sw1 (x = SEi)’ which
is the point at which ene of the following two events first occurs:

(a) The line initially intersects an existing facility location on Hi’
(b) The line attains the same length as the red (yellow) line on “i+1'
Note, in the north to south step that when an existing facility lying on

the west (east) boundary of B and Hi is first encountered, every blue (green)

10




line drawn subsequently is a degenerate line of zero length. In the

south to north step when an existing facility lying on the west (east)
boundary of B and Hi is first encountered, every subsequent red (yellow)
line drawn is a degenerate line of zero length. Figure 11 illustrates the
use of the 4-color procedure.

Classifying the Boxes.

Once the 4-color procedure has been completed, if we suppose the initial
horizontal lines to be uncolored, it is easily verified that the north edge
of each box colored in the north to south step is exactly one of the colors
blue or green, while the south edge of each box colored in the south to north
step is exactly one of the colors red or yellow. A box is a NW l-box (NE 1-box)
if and only if its north edge is blue (green) and its south edge is either un-
colored or blue (uncolored or green). A box is a SW 1-box (SE 1-box) if and
only if its south edge is red (yellow) and its north edge is either uncolored
or red (uncolored or yellow). A box is a NW-SE (NE-SW) 2-box if and only if
its north and south edges are blue and yellow (green and red) respectively.

A box is a null-box if and only if both its north and south edges are un-
colored. The color combinations listed in this paragraph for the three types
of boxes are the only ones possible.
Definitions.

(i) We observe that Nwi(swi) is the projection onto the x axis of the east

tip of the blue (red) line on Hi (H while Nll':l (8E1) is the projection

141
onto the x axis of the west tip of the green (yellow) line on Hi (Bi+1). We
refer to uwi, swi, NEi. and SE1 as the blue, red, green, and yellow projections

for row 1. For each row i, we define

*
W, = max (NHi, swi) .
E, = min (NE
4 = min (NE,, SE,)
and call H: and B; the west and east projections for row i. See Figure 11 for o
. ot
an example. Egi

L
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' (ii) Given a box B and distinct vertical lines x = V' and x = V with V' west
of V, we write V' < B < V when we mean V' is west of B and B is west of V.

Note that for a given row, there is at least one box B in the row such that

. V' < B <V 1if and only if V' < V. Further, for a given box B and vertical line

V", either B < V" or V" < B.

* *
(iii) Comparisons of Wi and Ei for R1 are crucial to the row algorithm we
shall develop for finding S*. Define Ri to be in Condition 0 (C-0), Con-
& * _* * * *
dition 1 (C-1), or Condition 2 (C-2) when Wi < Ei’ wi = Ei’ and Hi > Ei

respectively. Note the three conditions are mutually exclusive and ex-

haustive.

(iv) For each line “1’ 1<1i<p+1, define

u, = max(NWi, SW )

i i-1

where, by convention, SWO = - o, SEo = o,

) vi = min(NEi, SE1-1

g; Interpreting the Conditioms.

g (C-0) Since a box in R1 is a null-box if and only if its north and south
edges are uncolored, the following conditions are all equivalent for at
least one box B in R1 to be a null-box: the projection of B lies between

w*( <E* w*<E*
ot

the west and east projections for Ri; 1 i Ri is in C-0.
* % *
When wi < E: the null-boxes in R1 are those boxes B for which "i < B < Ei‘

(C-2). Since a box in R, is a 2-box if and only if its north and south edges are

i

either blue and yellow or green and red respectively, there is a least one

2-box in Ri if and only if the west and east projections for R1 overlap, that

*
i i

% % |
actly one 2-box B in R, if and only if !1 < B« wi. !

is, H: > E,, that is, R, is in C-2. Subsequently we establish there is ex-
* *
(C-1). Denote by V the vertical line identical to the line x = wi = Ei’ Denote by

* *
E that part of V lying south of ui and north of n1+1. Since "1 - ni the west

and east projections meet, so each of the boxes of which E is a vertical edge

has at least one colored edge. If E is an east vertical edge of B, at least

12
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one horizontal edge of B is blue or red, while if E is a west vertical edge of
B', at least one horizontal edge of B' is green or yellow. Thus an arrow of

each box in R1 of which E is a vertical edge points towards E, so that E is a

vertical connecting edge. Conversely, we establish subsequently that if E

® *
=V=E.,.

is a vertical connecting edge in R1 lying on the line x = V, then Hi 1

Horizontal Connecting Edges.

We remark it can be shown that a horizontal box edge is a horizontal
connecting edge if and only if it is uncolored, and not an edge of any null-
box. In order to identify the uncolored portion (if any) of each line Hi’
in the north to south (south to north) step of the 4-color procedure we note
that the blue (red) coloring of Hi from west to east stops at the point where

H1 intersects the line x = Nwi (x = 5“1-1)' Thus the blue and/or red

coloring of H, from west to east stops at the point where H, intersects

i 1

the line x = u . Similarly, the green and/or yellow coloring of Hi from

east to west stops at the point where ﬂi intersects the line x = v Thus

e
when u, . all of H1 is colored, while when u, < \A the x projection of

the uncolored portion of Hi is the interval [ui, vil. ;

Motivation for the Row Algorithm.

It is a readily established fact that if B is a NW l-box, and B' is

g R AN i AR

any box which is not east of B, and not south of B, then B' is also a NW

i TN AR

1-box. Completely analogous statements are true for NE, SE, and SW l-boxes.
Thus, roughly speaking, NW, NE, SE, and SW 1-boxes should be in the NW, NE,

SE, and SW portions respectively of B, Effectively, the row algorithm im-

plicity deletes such l-boxes from B, and then what is left becomes B%,

We now state formally the algorithm based on the 4 color procedure.

13
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Row Algorithm.

(1) Rank the existing facilities by their y coordinates to determine the
lines “1’ %2 bk Hp+1.

(2) Compute Hi and Ei’ l<i<p+1.

(3) Compute N"i and NEi using the recursions of Observation 8, 1 < 1 < p.

(4) Compute SW1 and SE, using the recursions of Observation 8, 1 <

A
-
A
'y

*
i

* *
(6) (a) "1 < E1 if and only if R1 is in C-0. The collection of null-boxes

*
(5) Compute E, and wi for 1 < i < p.

% *
in Ri is the collection of boxes B in R1 for which “1 < B < Ei'

Place all null-boxes in B*.

* *
(b) wi = E1 if and only if Ri is in C-1. The unique vertical connecting

* *
edge E in Ri is the vertical edge E contained in the line x = "1 = Bi'
Place E in B*,

* *
(c) wi > E1 if and only if R1 is in C-2. The unique 2-box in R1 is the

% %
g < B < HI; place this box in B*., All null-boxes, 2

box B such that E
boxes, and vertical connecting edges are now in PB%,

(7) For the horizontal line Hi, 1<1i<p+1;
(a) if ug = vy then H1 contains no horizontal connecting edge;

(b) if u, <v, then a horizontal edge E contained in H, is a horizontal

i
connecting edge if and only 1if it lies in Hi between the vertical lines
x=u, and x = Vi and is not an edge of any null-box. Place each such E in s*.
(8) S* = B%x, Stop.
Figure 11 illustrates the use of steps 2 through 6 of the algorithm,
together with the result of step 7.
tational Efficienc tions.

We now establish that the order of computational effort of any algo-
rithm which constructs S* is at least n(log n), where the logarithm is to

14
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the base 2, and n is the number of existing facilities. We shall see that
the order of computational effort of the row algorithm is n(log n). Hence
the row algorithm is "optimal", in the sense that its order of computational
effort is as small as that of any algorithm for constructing S*.

Given n distinct numbers, a,, ..., a_, it is known that (see pps. 159-170

1 n

of [3], or pps. 65~67 of [1]), the minimum number of comparisons needed to ramk
the numbers is of order n(log n). Now define existing facility locations

Pj = (aj, aj), 1 <j <n, and consider the example problem of specifying S*

for the existing facility locations. In order to state S*, let (1], ...,

[n] be a permutation of 1, 2, ..., n such that

a <3J <n -1, and define

(31 < 2papr !
s;- {(x' y): a[j]ix' yia[j‘.'l]}’ lijin-l'

*
Each 8, is a 2-box with SW and NE vertices of P and P respectively.

b [i]
It is easy to use the row algorithm to establish that

[3+1]

Sk = S* S* S
1 YS V.S .

%
b
3
3
E

o

Any other correct algorithm to determine S* would also need to specify
*

3

a2 C qfpap
correct algorithm must be able to sort the numbers 835 oey @, and

is completely determined by the numbers ‘[j] and

*
each Sj. and each S

1<3j<n-1. Hence in order to specify S* any

so its order of computational effort is at least n(log n). (Note this
example problem also establishes that any algorithm to construct S* is
at least of order n when the Line Construction Procedure is considered not
to be part of the algorithm,as S* is the union of n - 1 boxes.)

Now consider the row algorithm. Step (1) requires the ranking of n
numbers, and so is of order n(log n). If n, is the number of existing

facilities on ai. finding "1 and l1 is equivalent to the problem of find-
ing the maximum and minimum numbers in a collection of n, numbers, and it

15




is known (see Pohl [4]) that this problem can be solved in <(1.5)n1 - 2>
comparisons at best (here <y> denotes the smallest integer no leas than

y). Since <(1.5)n1 - 2> < (1.5)(n1 - 1), an upper bound on the number of

comparisons made in Step (2) is given by
L {@.5)(ny - 1): 1<4i<p+1}=(1.5n - (1.5)(p + 1).

Steps (3) through (6) each require 2p comparisons, for a total of 8 p com-
parisons. In the analysis (Observation 20) we establish that Step (7) can
be accomplished in no more than 8(p + 1) comparisons. Thus Steps (2)
through (7) require at most (1.5) n - (1.5)(p +1) +8p +8(p + 1) =

(1.5) n+ (6.5)(p + 1) + 8p < 16n comparisons. The minimum number of com-

2<log n>

parisons needed for Step (1) is n <log n> - + 1, which is no greater

than n <log n>. Thus an upper bound on the number of comparisons made in
Steps (1) through (7) is given by n <log n> + 16n. Therefore, roughly
speaking, Step (1) requires more effort than Steps (2) through (7) when
n <log n> > 16n, which is true when n > 216-65,536- Hence the nonlinear
effort of the first step does not predominate until n is "large", in which
case the row algorithm is of order n(log n). In effect, setting up the pro-
blem (Step (1)) requires more effort than solving it when n is large!

Some idea of how the computational effort of the row algorithm compares

2 or n3 can be obtained by examining Table 1. The

comparisons in the table are conservative, in the sense that order n2 and n3

with algorithms of order n

algorithms typically have a multiplicative constant greater than one.
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ANALYSIS

Diamond Intersection Lemma. Given diamonds D(Pi' ei), fe T edl, 2; iveuni,

with

D= n {D(Pi’ ei) t1elIl #¢

if X is a point in D such that no point in D dominates X, than X is in S*.
Proof. Let Y be any point in the plane. If Y ¢ D there is an index q ¢ I
such that Y ¢ D(Pq, eq), and thus r(Pq, X) 5_eq < r(Pq, Y), so Y does not
dominate X. By hypothesis Y does not dominate X if Y € D, so X € S*. (We
shall refer to this lemma as DIL.)

Property 1. Every null-box is efficient.

Proof. Let B be any null-box and let X € B. Since B is a null-box we

may choose Pl, Pz, P3 and P4 in NE(B), NW(B), SW(B), and SE(B) respectively
as illustrated in Figure 7 . Define e, = r(X, Pi)’ and construct

i

D, = D(P,, e), 1 <1i<4. WithL ;=D n Dy, L), 2D, nD,, we note

13 24
L13 is a SE-NW line segment, L24 is a SW-NE line segment, and

D=L, .nL, = (X}

13 24
Thus no point in D dominates X. DIL thus implies X ¢ S*. Since
X is an arbitrary point in B, B c S*,

Observation 9. Only a 1-box can be adjacent to a 2-box. Whenever a

1-box and 2-box are adjacent, the arrows in the boxes are parallel,
and the arrow in the l-box points towards the edge common to the 1-box
and 2-box.

Proof. Let B be a 2-box, and let B' be a box adjacent to B. It is
direct to verify that if B' is a null-box, an occupied direction of

B' is contained in an unoccupied direction of B, which is impossible.

17
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If B' is a 2-box, either an occupied direction of one box is contained in
an unoccupied direction of the other, or else there is no P1 on the line
separating the boxes; both impossible situations. If B' is a 1l-box, an
occupied direction of B' is contained in an unoccupied direction of B ex-
cept when the arrows in the two boxes are parallel, which completes the
proof.

Observation 10. Let B be a 2-box, and let B' be a l-box adjacent to B, and

in the same row (column) of boxes as B. If B" is any other box in the

same row (column) as B and B' such that B' lies between B and B", then B"

is also a 1-box, and the arrows in B' and B" have the same label.

Proof. Let B be a 2-box. By Observation 9, we know that any box B' ad-

jacent to B is a 1~box. We may assume that B, B', and B" are all in the

same row. Also, due to symmetry, we may assume that the arrow labels of B

are NE and SW, and that B' is east of B. Thus B" will be east of B', as illustra-
ted in Figure 8. Now SW(B') < SW(B") and SW(B') occupied implies SW(B") is oc-
cupied. NW(B) c NW(B") and NW(B) accupied implies NW(B") is occupied.

NE(B") c NE(B) and NE(B) unoccupied implies NE(B") is unoccupied. If SE(B")

7 S

b ol JE

is unoccupied, no P1 would lie on the vertical line passing through the
east edge of B", which is impossible. Thus SE(B") is occupied, and B" is
a 1-box having an arrow with a NE label, the same label as the arrow in B'.
Property 2. Every 2-box is efficient.

E Proof. Let B be any 2-box. Without loss of generality we may assume the

arrows in B are NE and SW arrows, that B is the intersection of half-planes
defined by lines as illustrated in Figure 9. If there is a l-box B' which

is adjacent. and north of B, by Observations 9 and 10, the arrow in B'

18




has a NE label. If there is an adjacent box B" to B such that B" is south
"' of B, then the arrow in B" has a SW label. Since SW(B) is unoccupied, there
must be some Pi € V.n NW(B), or else there would be no Pi € V. Likewise,

there must be some P, € V' n SE(B). Choose any X ¢ B, and define

3

e, = r(x,Pi), ej = r(X,Pj), D= D(Pj, ei) n D(Pj’ ej). Since X € D,
by DIL X € s* provided no point in D dominates X. We make the
following observation: D is a SW-NE line segment, entirely contained

in the column of boxes, say C, which contains B and B'. Now if Y e D n B,

r(X, Pi) = r(Y, Pi) for all i, so Y does not dominate X, thus completing
the proof for the case when B' = ¢ = B", If Ye D, Y ¢ B, Y is in a box
in C which is a 1-box, and, hence, by Observations 9 and 10, there is a
point Y' in B n D which dominates Y. Since Y' dominates Y, and Y' does

not dominate X, Y does not dominate X, so X € S*, Thus B c S%,

l Property 3 Every connecting edge is efficient.

Proof. Let E be any connecting edge. Without loss of generality, we may
assume E is an east edgeof a 1-box B, and that B has a SW arrow.

Consider first the case where E is contained in the boundary of 8.
Then, as Figure 6a illustrates, since E lies on the east boundary of 8,
SW(B) is unoccupied, and there is a point P1 € Hn V., Also, since E lies
on the east boundary of B and NE(B) is occupied, there is a point Pk €
r(X, Pk)' and D = D(Pi' ‘1) n

P OPIp—

V n NE(B). If X ¢ E, e z r(X, Pi)’ ey
D(Pk’ ek), then D = {X}, and so by DIL, X ¢ S* and thus E c S%,

Now suppose there is a l-box B', adjacent to, and east of, B. The
arrow in B' is either a SE arrow, as illustrated in Figure 6b, or a NE

3 arrow, as illustrated in Figure 6c. In the former case we conclude there

is some P1 € SE(B) n SW(B'), some Pj

as illustrated by Figure 6b. Hence if X ¢ E, defining e, = r(X, Pi)’

€ V' n NW(B), and some P, € V" n NE(B'), !
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ej = r(X, Pj)' e = r(X, Pk)’ D= D(Pi’ ei) n D(Pj, ej) n D(Pk’ ek), we

conclude D = {X} and thus, by DIL, X, and hence E, is efficient. In the
latter case, NE(B') unoccupied and NE(B) occupied implies some Pi € NE(B) n V.

Likewise SW(B) unoccupied and SW(B') occupied implies some P, ¢ SW(B') n V.

k

Hence for any X € E, with e, = r(X, Pi)’ ey = r(X, Pk)’ D = D(Pi’ ei) n

i
D(Pk’ ek)’ we conclude D = {X}, invoke DIL, and conclude X, and thus E,
is efficient.

Observation1ll. If X € B and lies at the intersection of four l-boxes, then

X lies on a connecting edge.
Proof. With reference to Figure 10, there exist l-boxes, Bl’ ielap 84 such

that {X} = B. n B, n B, n B,. Define the edges E., = B. n B nB

3 M By 0 Ry 12 = 81 0 Bge Bpq = B,

E34 = B3 n BA, E41 = B4 n Bl. We shall establish at least one of these

edges is a conmnecting edge. Suppose none of the edges is a connecting edge.

1 3?

Then for each edge E j at least one arrow in B, or BJ does not point towards

i i

E Without loss of generality, suppose the arrow ;1 in Bl does not point

ij°
towards Eld’ so that 51 is not a NE or a NW arrow. ;1 cannot be a SW arrow,
for then X would not be in B. Thus 51 is a SE arrow, and points toward Elz'

The arrow ;z in 32 cannot be a SE arrow as then X would not be in §. Since

al points towards 312’ ;2 cannot be a SW or NW arrow, and thus ;2 is a NE
arrow. Similarly, we conclude 03 is a NW arrow, and ;4 is a SW arrow. But
now we have the situation illustrated in Figure 10, where an occupied direc-
tion of each box is contained in an unoccupied direction of an adjacent box.
Such a situation is impossible, and so X lies on at least one connecting
edge.

Property 3. B is contained in g%,

Proof. Let X € B. Since every box in 8 is a null-box, l-box, or 2-box,
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L X must lie in one such box. If the box is a null-box or 2-box, certainly

X ¢ gx, so it remains to consider the case where X is in a 1-box, but X is
in no null-box or 2-box.

Since X 1s in a 1-box, say B,, and in B, X must lie on some leading

edge of Bl, say E, of positive length. If E is contained in the boundary
of g, since the arrow in Bl points towards E, E 1s a connecting edge. Thus

it remains to consider the case where E is not contained in the boundary of

29 such that E = Bl n 32' Thus

X is in Bz, and so 82 must be a 1-box. If X is not an endpoint of E, since

! B. In this case there is some box, say B

X € B the arrows in Bl and Bz must point towards E, and so E is a connecting

edge. Thus suppose X is at an endpoint of E. Since X ¢ Bl n B2 and X is

such that {X} =

not on the boundary of B, there exist l-boxes B, and B

3 4

B1 n B2 n 83 n 84 (as illustrated in Figure 10 ), Thus, by Observation 11,

X lies on a connecting edge.

Theorem 1. 8, B%, and S* are identical and nonempty.

Proof. By Observation 6 , every point not in B is dominated, and thus
S* c . By Properties 1, 2, and 3, B* c S*, and so B* c S* c B. Since
Property 4 gives § < g%, we conclude % = S* = B, As every P1 is in S*,

S* # ¢, 50 B* = B = Sk ¢ ¢,
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We now give the analysis needed to justify the row algorithm.

* #
is a null-box if and only if "i <B<E,.

Observation 12. A box B in R 1

i
Proof. By Observation 7, the four directions of a null-box B are oc-

cupied if and only if nwi < B, SHi < B, B« NEi. B < SEi, which is equiv-

* : %
alent to Hi B < Ei'

Observation 13. A box B in Ri is a 2-box if and only if either NEi < B« SE1

or NHi < B < SHi.

Proof. By Observation 3, a box B in R, is a 2-box if and only if B is

i

? either a NW-SE or a NE-SW 2-box. B in R, is a NE-SW 2-box if and only if

i
NE(B) and SW(B) are unoccupied and NW(B) and SE(B) are occupied. Thus

Observation 7 implies B is a NE-SW 2-box if and only if nwi < B, NEi < B,

B < SW, B < SE By definition, NW < NE, and SHi < sgi, so B in R, is

i’ i i
; a NE-SW 2-box if and only if NEi < B < SWi. Similarly, B in R1 is a NW-SE

2-box if and only 1if SE1 < B < Nwi.

Observation 14. Given a box B in R

i’
NE, < Bg SW, (1)
or SE1 < B < nwi (11)
if and only if
* * i
i E, <B<W,. (111) {

& * * *
Proof. By definition, E1 < szi, Ei < m?.i, Sﬂi < wi. and Nﬂi < ":l.’ so if

' (i) or (ii) is true then (iii) is true.

*
. Suppose (i11) is true. Either z; - SE, or s: = NE,. When E, = SE,

(111) and SW, < SE, give

*

SW, < SE, = E,

< B < ux(“ ’ mi)- (1') : b

Since (iv) implies B < NW

;» Ve conclude (111) implies (11). When n: - NE,,

(111) and uwi 5_!!1 give




*
N, < NE = Eg

Since (v) implies B < SW

< B < max(SW , NW ). (v)

i» ve conclude (iii) implies (ii).

We summarize Observations 9, 10, 13 and 14 in

*

Observation 15. A box B in R, is a 2-box if and only if E

i

* *
Ri contains exactly one 2-bex if and only if E1 < Wi.

B < H*
< °
i

Next we state a readily established result needed in identifying ver-

tical connecting edges.

Observation 16. (a) If B is a westmost NE(SE) l-box in Ri’ then every bex
east of B in R1 is a NE(SE) 1l-box, while if B' is any box in R1 which has a
label and is west of B, then the label of B' is either NW or SW. (b) If

B is an eastmost NW(SW) l-box in R,, then every box west of B in Ri is a

i
NW(SW) 1-box, while if B' is any box in R1 which has a label and is east of
B, then the label of B' is either NE or SE. (c) The labels of l-boxes in

any row are of at most two different types.

Observation 17. Given a vertical edge E in R1 lying on the vertical line

* *
x =V, E is a vertical connecting edge if and only if Wi =V = Ei'

*
Proof. Due to symmetry it is enough to consider the cases "1 = swi,
* *
Bi = "Ei’ and E1 = SE1’ as illustrated in Figure 6. Also we may assume
there is a box B in Ri such that E is the east edge of B. If E lies on the

*
line x = V = Swi = wi, B has only one arrow, a SW arrow , which points towards
E. Thus if E is contained in the east boundary of B then E is a vertical

connecting edge. Otherwise there is a box B' in R,, east of B, such that

1°
E=BnB'. Since E 1ies on the line x = Vand V = SE; or V = NE,, there
is exactly one arrow in B', a SE or NE arrow, which points towards E. Thus
B: =V= w; implies E is a vertical connecting edge.

Conversely, let E be a vertical connecting edge in R, contained in the
line x = V. If Ey # W], Observations 12 and 15 would imply R, 1s in C = 0
or C - 2, in which case Observation 16, or Observations 9 and 10, would imply

an arrow of a box of which E is an edge does not point towards E, contradicting
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i

* *
the fact that E is a vertical connecting edge. Thus W, = Ei'

i
* * * *
It remains to show wi =V = Ei' Let x = V' be a line such that "1 =V = Ei
*
and suppose V # V'. Since "1 = V', every box west of V' will have either a

*
NW or SW label, while since V' = Ei every box east of V' will have either a

NE or SE label. Denote by E' the vertical edge in R, contained in V'. From the

i

first part of the proof we know E' is a vertical connecting edge. Without loss

of generality we may assume V' is west of V. Thus there exists a l-box B' of Ri

such that E' is a west edge of B', and there exists a l-box B of Ri such that

E is an east edge of B. Since E and E' are vertical connecting edges, there is

a NW or SW arrow in B pointing towards E, and a NE or SE arrow in B' pointing

towards E'. Further, NE(B) and SE(B) are occupied while either SE(B') or NE(B') 1is

unoccupied. But NE(B) and SE(B) are contained in SE(B') and NE(B') respectively.

Thus an occupied direction of B is contained in an unoccupied direction of

B' if V # V', and we have a contradiction. Thus HI =V = E:-
Given any horizontal edge E, whenever E is east of the vertical line

x = V and west of the vertical line x = V' we write V < E < V', Given any

edge E contained in Hi‘ it is easy to verify that E is uncolored if and only if

u <Ec< vy Hence the following result can be established:

Observation 18. Given an edge E contained in a horizontal line Hi‘ E is a

horizontal connecting edge if and only if u, < E < vy and E is not an edge of
any null-box.
We now state
Theorem 2. The set constructed by the row algorithm is the efficient set.
Proof. A direct consequence of Observations 12, 15, 17, 18, and Theorem 1.
It now only remains to consider the computational effort involved in Step (7)

of the row algorithm. Due to Observation 18, if u v there is no connecting
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F" edge in Hi' If uy < vy and we remove from Hi the interior points of all

edges which are null-box edges, then the remaining edges (if any) are the

horizontal connecting edges in Hi' We consider the case where there are

null-boxes in both Ri-l and Ri’ as this case requires the most effort. Let

* * i * *
1_1’ Ei-ll’ J - [wi’ Ei]‘

uncolored portion of Hi’ while, by Observation 12, J' and J" are the x-projections

L= lu, vl J' = [W 1 is the x projection of the

of the null-boxes in Ri-l and Ri respectively. Because the null-boxes whose
horizontal edges are in Hi have these edges uncolored, we have J' ¢ I, J" ¢ I.

The most direct way to determine the computational effort for this case is
to state a simple algorithm which identifies all the horizontal connecting edges
in Hi' We consider the algorithm self-evident, as it simply determines all the
points in I which are not interior to J' u J".

i Observation 19. When Ri~l and Ri each contain null-boxes, the horizontal con-

necting edges in H, may be determined as follows.

i
(a) check to see which of the intervals J' and J" has a leftmost endpoint;

T W7 20

denote this interval by I' and denote the other interval by I". Let I' = [a', b'],
" = [a", b"].

(b) Check to see if I' abuts the left endpoint of I; if it does not, the edges

in H1 whose x projections lie in [ui. a'] are horizontal connecting edges.

(c) Check to see if I' and I" intersect; if they do not, the edges in ni whose

x projections lie in [b', a"] are horizontal connecting edges.

(d) Check to see which of the two intervals I' and I" has a rightmost right
endpoint, and denote this interval by I"™ = [a"', b"'].

(e) Check to see if I"' abuts the right endpoint of I; if it does not, the edges
in H whose x projections lie in [b i '1] are horizontal connecting edges.

In steps (a) through (e) respectively we note that the following terms are
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" compared: ":-1 and H:; uy and a'; b' and a"; b' and b"; b"' and vy Hence,

’ given all the necessary data, we can find all the horizontal connecting edges
by making at most 5(p + 1) comparisons. To obtain the data, with reference
to Step (7), we must conpute’the uy and vy (2 p comparisons) and then compare
them (p + 1 comparisons). Thus Step (7) requires at most

5(p+1) +2p+ (p+1) < 8(p+ 1) comparisons. As p + 1 < n, we have

Observation 20. Step (7) of the row algorithm requires at most 8(p + 1) < 8 n

comparisons.
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b [,
|
< L} o’ o’ x(a)
. 2 4 8 33
' 4 16 64 69
8 64 512 145
16 256 4,096 305
32 1,024 32,768 641
64 4,096 262,144 1,345
: {
128 16,384 2,097,152 2,817
256 65,536 16,777,216 5,889
Table 1: cmauuml ﬁfifqﬂ;, Comparisons for h‘z 5 ns. and Row Algorithm,
: lagn B : 4
r(n) = n < Bl Sl A B 28 s
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